

Front End Security Architecture as an Integrated Component of System Development

Contacts: Beryl Hosack 301-921-3440

Bhosack@csc.com

Joe Guirreri

703-279-3588

Jguirrer@csc.com

Agenda

- Introduction
- Background
 - September 11 Urgency
 - Directives and laws
 - Audits and Inspections
- Fundamental Issues in Protecting the NAS Infrastructure
- Base-lining the Security Architecture Up-Front
- Information Risk Management Model
 - How to do it, how to deliver it
- Summary/conclusion
- Questions?

CSC is Integrally involved in Security

- NSC Infosec Assessment Training and Rating Program: evaluating NSA information security
 - Internationally recognized as one of 5 labs in United States authorized by NIST/NSA under NIAP to perform product & system security evaluations (common criteria ISO 15408)
 - helps agencies comply with Presidential Directive 63 (vulnerability assessments)
- DoD Computer Investigations Training Program
 - develop & deliver state-of-art computer investigation training courses for military law enforcement professionals including search & seizure, computer intrusions, forensic computer media analysis.

CSC Recognized for Computer Security Expertise

- CSC Security Center of Excellence independently appraised at System Security Engineering Capability Maturity Model (SSE-CMM) Level 3 for INFOSEC assessments (Security Assessment Methodology)
- FAA:
 - Key player in FAA CIRC operations
 - Performing FAA Certifications and Accreditations
 - Key player in CPDLC (Data Link) Security Architecture formulation
 - CPDLC 1A Security Working Group
- Providing courseware across NASA through SOLAR system

Introduction/Background

- Post September 11, security components are coming under intense scrutiny
 - security becomes higher priority for the Federal sector
 - high priority for public as well
 - Expectations of reduced operational costs & increased customer satisfaction place network security in the limelight to help achieve these strategic initiatives
- NAS modernization efforts increasingly pressured to trade-off security, performance & cost across the NAS
- Reduction of NAS vulnerability dependent on:
 - integrated security approach supported by robust infrastructure
 - adoption of security best practices
 - continued development of a NAS-wide security architecture (within FAA guidelines & FAA internal ISSA)

Federal & FAA Directives Direct Our Actions

- Continued emphasis on directive and law ensures high degree of integration within modernization efforts such as the NAS
 - OMB Circular 130, Computer Security Act of 1987, Clinger-Cohen, GISRAQ, FAA Directives
 - Standardized approach to security across the Federal Government, ensures security plans & processes support organizational missions & ensures actions are taken to certify systems & mitigate risk
 - Reduces implementation costs of security technologies
 - Assures adequate monitoring of attacks throughout Enterprise systems e.g. the NAS

Developing an Architecture for security up-front provides enormous cost savings during implementation & maintenance. Security must not be "bolted-on after the fact.

Fundamental Issues in Protecting the NAS Infrastructure

Get infrastructure security under control

- Secure distributed operation and administration with centralized coordination or control
- Flexible, manageable, visible (COTS) security

- Reduce cost of maintaining infrastructure security
 - Shared infrastructure standardization for security services (e.g., identification, authorization, encryption, access control, digital signatures)
 - More reliable risk metrics that include operational consequences
- Expand and improve business by using new (secure) infrastructure services
 - Secure COTs applications

Base Line the Security Architecture Up Front

Security architectures must be developed & integrated from the start of the development process

- Cohesively integrated infrastructures & architectures,
 beginning at the enterprise level are the key to NAS protection
- An array of technologies are being adopted to protect the NAS:
 - anti-virus tools, hardware based firewall technologies, security management strategies, intrusion detection, PKI, client-server certificates

- Other technology areas need more analysis:
 - Use of DMZs, implementing PKI,refinement of anti-virus tools, intrusion prevention and routers
- Increasingly strategic, complex or expensive security solutions are under consideration for adoption
 - e.g. recently announced FAA directive to use PKI for ATN communications
 - e.g. new firewall models expected to improve performance and scale-ability while expanding protocol proxies & adding more to the devices including support for the new US/Gov approved AES (advanced Encryption Standard)

Up front base-lining reduces cost of insertion of new technologies as system matures

Designing Security Into the Architecture "Up-Front"

- Enabling centralized Security Management:
 - tighter management integration of security solutions firewalls, VPNs, intrusion detection
 - Federal security organizations, reporting at a "high level"centralize security policies & standards
- Maturing Network Security service technologies e.g.PKI
 - more easily promoted for inclusion within the security architecture
- Consistent manner of embedding security standards within the infrastructure

Architecture Framework

Business
Drivers
Technology
Drivers

Embed Architecture into Total Security Capabilities

- Security program and policy planning
 - Organization
 - Roles, responsibilities, authorities
 - Collaboration and coordination
- Security requirements analysis
 - Regulatory compliance
 - Audit compliance
 - Business value estimation
- Security compliance standards generation
- Security assessments
 - Strategic
 - Technical vulnerability
- · Security architecture design
- Trust technology evaluations
- Security R&D and representation
- Security tool development, licensing, and support

- Security test and evaluation of pilot implementations
- Security certification and accreditation/authorization (C&A)
- Security transformation and migration planning and execution
- Security technology introduction
 - Public Key Infrastructure (PKI)
 - Wireless
 - e-commerce assurance
- Information assurance technique training
- Application security requirements implementation and validation

- Client facility and asset protection
- Account security administration
- Security policy management
 - Control point devices (e.g., firewalls, switches, routers, VPNs)
 - Platform security
 - Directory services
- Security protection program
 - Vulnerability assessments & tracking
 - Vulnerability alert management
 - Anti-virus planning and execution
 - Audit readiness reinforcement
- Security compliance monitoring
 - Intrusion detection
 - Internet abuse prevention
 - Content filtering
 - Control point device policy compliance
 - Host (platform) configuration compliance
- Incident response and remediation
 - Computer forensics
- System security improvement program

How To Do It Information Risk Management Model

Including all categories of safeguards

How To Deliver It From IRM Model to IRM *Program* (IRMP)

Model **Program**

- Scope
- **Security Standards**
- Mission needs
- Current practices
- Legal requirements
- Acceptable risk threshold
- Data and process sensitivity
- Legacy obligations
- Evaluated security technology
- Operating model
- Cost constraints
- Schedule constraints

Information Risk Management Approach (IRMA) Information IRMP Organization Risk

Management

Model

- SWG operation
- BIAA
- 100-Day Plan
- Transition Security Handbook

Legend

Typically targeted for accelerated implementation

- **E** Security Compliance Standards (SCS)
 - Equipment configuration standards
 - Process action standards
 - Staff capability standards
- Security Architecture Specification (SAS)
- Staff Security Services (SSS)
 - Security Handbooks and Checklists
 - Security Awareness Training
 - Staff background checks
- Mission Continuity/Disaster Recovery Interface (MC/DRI)
- **Special Security Needs (SSN)**
- Security Protection Program (SPP)
 - Vulnerability Alert Management Process (VAMP)
 - Vulnerability Assessment Program Plan (VAPP)
 - Security Compliance and Monitoring Service (SCMS)
 - Anti-virus Program Plan (AVPP)
 - Incident Response Team (IRT)
- System Security Improvement Program (SSIP)

Sample of Implementation Effectiveness IRMP Results for Data Center Infrastructure Defense

CSC

Lessons Learned: Key Discriminators

CSC CyberCare[™]

Ensuring the Front-end Security Architecture Remains an Integrated Component of System Development

- Provide Information Assurance Technique Training e.g.
 - Information Security Concepts and Assessments,
 - Vulnerability Assessment and Mitigation
 - Security Technology and Administration
 - Security Incident Preparation and Response
 - Computer Forensics and Investigations
- Architect for services including intrusion detection, compliance monitoring, incident response and recovery

- Maintain Security Research Labs e.g.
 - Compliance Monitoring tools & techniques
 - Vulnerability assessment & remediation research
 - C&A process automation
 - Trust technology evaluations
 - Computer forensics
 - PKI integration and enablement
 - Secure e-Government in the back office
 - Threat analysis
 - Incident management
 - C&A automation

Summary

- Within the Federal Sector centralization of Security management & policy increasingly plays a significant role in infusing information security
 - process
 - awareness
 - technology
- To properly secure resources, security must be "built-in"
 - after-the-fact security is unworkable
- Security requirements & architectures must be developed from start of mission system architectural design process
- Applying this philosophy to NAS components will significantly reduce NAS vulnerability & achieve goal of protecting the NAS